Патент US7809631 Crosscurrency implied spreads Google Патенты

Post on: 16 Июнь, 2015 No Comment

Патенты

REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 60/738,246 filed Nov. 18, 2005, which is hereby incorporated by reference.

The following co-pending and commonly assigned U.S. Patent Applications have been filed on the same date as the present application. These applications relate to and further describe other aspects of the embodiments disclosed in the present application and are herein incorporated by reference:

      U.S. patent application Ser. No. 11/601,489, “DETECTION OF INTRA-FIRM MATCHING AND RESPONSE THERETO”, filed herewith, published as U.S. Patent Application Publication No. US 2007/0118460 A1, pending; and U.S. patent application Ser. No. 11/600,984, “MULTIPLE QUOTE RISK MANAGEMENT”, filed herewith, now U.S. Pat. No. 7,734,538.

    COPYRIGHT NOTICE

    BACKGROUND

    Futures Exchanges, referred to herein also as an “Exchange”, such as the Chicago Mercantile Exchange Inc. (CME), provide a marketplace where futures and options on futures are traded. Futures is a term used to designate all contracts covering the purchase and sale of financial instruments or physical commodities for future delivery on a commodity futures exchange. A futures contract is a legally binding agreement to buy or sell a commodity at a specified price at a predetermined future time. Each futures contract is standardized and specifies commodity, quality, quantity, delivery date and settlement. An option is the right, but not the obligation, to sell or buy the underlying instrument (in this case, a futures contract) at a specified price within a specified time.

    The foreign exchange market is the largest and most liquid financial market in the world, representing more than $1.2 trillion worth of transactions each day. Also known as forex or FX, currency trading typically involves the simultaneous purchase of one currency while selling another currency. Currencies are typically traded in pairs, such as U.S. dollar/Japanese yen (USD/JPY) or Euro/U.S. dollar (EUR/USD), or via currency indexes, such as the CME$INDEX(TM).

    In order to capitalize on the foreign exchange market, CME also offers FX futures products, i.e. futures contracts where the underlying financial instrument is a foreign currency transaction, in addition to futures products based on other commodities and financial instruments. However, FX futures are not the only mechanisms by which foreign currencies may be traded. For example, the FX interbank market is a global network of the world’s banks with no centralized location for trading. Much of the business is conducted over the-phone or electronically bank-to-bank. The FX market is a 24-hour-per-day market during the FX business week. The day starts in Asia, extends over to Europe and then into the U.S. daytime trading hours. Currencies are traded around the world, around the clock, from Monday morning (Sunday afternoon Chicago/New York time) in New Zealand/Asia to the close of the business week on Friday afternoon in Chicago/New York.

    Over the Counter (“OTC”) is the term often used to refer to currency trading instruments which are not classified as a “futures” instrument as defined above and not traded on a futures exchange such as CME, i.e. that which is not a futures contract is an OTC contract. Such OTC contracts include “forward” contracts, i.e. private agreements between buyers and sellers, i.e. bilateral contracts, for the future delivery of a commodity at an agreed price. While futures contracts are regulated by the Commodity Futures Trading Commission (“CFTC”), forward or OTC contracts are not so regulated, making them more flexible and an attractive device to certain investors and certain markets.

    Speculators are active in the FX markets, as they are attracted to the opportunities that volatile and changing market conditions create. A multitude of economic forces impact the world’s currencies. Some of the forces at work include interest rate differentials, domestic money supply growth, comparative rates of inflation, central bank intervention and political stability. In times of global uncertainty, some currencies may benefit from perceived “flight-to-safety” status. Or, if one country’s economic outlook is perceived as strong by market forces, its currency may be firmer than another country’s currency, where economic or political conditions are viewed with caution.

    FX traders include governments, corporations and fund managers doing business with foreign countries, that need to exchange one currency for another, and speculators who seek to profit from price movements in the markets.

    The highly liquid and volatile currency markets offer opportunities for speculators every day. Most speculators tend to focus on the so-called “majors,” which are the most actively traded currencies and include the U.S. dollar, the euro, the Japanese yen, the British pound, the Swiss franc, the Australian dollar and the Canadian dollar.

    While the OTC FX market offers advantages such as less regulation and more product flexibility, CME’s futures exchange offers its own benefits, such as centralized and anonymous matching and clearing, as well as efficiency optimization and risk management/credit screening mechanisms not available in the present OTC markets. It would therefore be advantageous to be able to trade OTC FX products via the same mechanisms used to trade futures contracts in order to secure these same benefits and protections.

    Accordingly, there is a need for systems and methods to allow OTC FX products to be traded in a centralized matching and clearing environment such as the environment utilized by CME’s futures exchange.

    BRIEF DESCRIPTION OF THE DRAWINGS

    FIG. 1 depicts a block diagram of an exemplary system for trading OTC FX instruments according to the disclosed embodiments.

    FIG. 2A shows a more detailed block diagram of the system of FIG. 1 according to one embodiment.

    FIG. 2B shows a more detailed block diagram of the system of FIG. 1 according to an alternative embodiment.

    FIG. 3 shows an exemplary screen display and price determination.

    FIG. 4 shows an exemplary business message flow for the Directed RFQ functionality for use with the disclosed embodiments.

    FIGS. 5A-5G depict block diagrams of a Flexible Hybrid Central Counter-party Cross-Margining or Cross Collateralization system according to one embodiment.

    FIG. 6 depicts a more detailed block diagram of the system of FIG. 1 according to one embodiment.

    FIG. 7 depicts flow charts showing the operations of the system of FIGS. 1 and 6 according to one embodiment.

    FIG. 8 depicts a block diagram of an exemplary system for trading OTC FX instruments having a directed request for quote system according to the disclosed embodiments.

    FIG. 9 depicts a block diagram of one embodiment of a directed request for quote server for use with the system of FIG. 6 .

    FIG. 10 depicts a block diagram of an exemplary system for trading OTC FX instruments having a directed request for quote system according to an alternative embodiment.

    FIG. 11 depicts a block diagram of an exemplary system of managing risk undertaken by market participants according to one embodiment.

    FIG. 12 depicts a flow chart showing the operation of the system of FIG. 11 according to one embodiment.

    FIG. 13 depicts a block diagram of an exemplary system for providing intra-currency spreads according to one embodiment.

    FIG. 14 depicts a flow chart showing the operation of the system of FIG. 13 according to one embodiment.

    FIG. 15 depicts a block diagram of an exemplary system for handling intra-firm matches according to one embodiment.

    FIG. 16 depicts a flow chart showing the operation of the system of FIG. 15 according to one embodiment.

    DETAILED DESCRIPTION OF THE DRAWINGS AND PRESENTLY PREFERRED EMBODIMENTS

    The disclosed systems and methods relate to allowing trading of over the counter (“OTC”) foreign exchange (“FX”) contracts on a centralized matching and clearing mechanism, such as that of the Chicago Mercantile Exchange’s (“CME”’s) futures exchange system (the “Exchange”). The disclosed systems and methods allow for anonymous transactions, centralized clearing, efficient settlement and the provision of risk management/credit screening mechanisms to lower risk, reduce transaction costs and improve the liquidity in the FX market place. In particular, the disclosed embodiments increase speed of execution facilitating growing demand for algorithmic trading, increased price transparency, lower cost of trading, customer to customer trading, and automated asset allocations, recurring trades as well as clearing and settlement efficiencies.

    FIG. 1 shows a block diagram of an exemplary system 100 for trading OTC FX instruments according to the disclosed embodiments. The system 100 is essentially a network 102 coupling market participants 104 106. including traders 104 and market makers 106 with the Exchange 108. Herein, the phrase “coupled with” is defined to mean directly connected to or indirectly connected through one or more intermediate components. Such intermediate components may include both hardware and software based components. Further, to clarify the use in the pending claims and to hereby provide notice to the public, the phrases “at least one of , . and ” or “at least one of , . , or combinations thereof” are defined by the Applicant in the broadest sense, superseding any other implied definitions herebefore or hereinafter unless expressly asserted by the Applicant to the contrary, to mean one or more elements selected from the group comprising A, B. and N, that is to say, any combination of one or more of the elements A, B. or N including any one element. alone or in combination with one or more of the other elements which may also include, in combination, additional elements not listed. The Exchange 108 provides the functions of matching 110 buy/sell transactions, clearing 112 those transactions, settling 114 those transactions and managing risk 116 among the market participants 104 106 and between the market participants and the Exchange 108. as well as request-for-quote functionality 118. as is discussed in more detail below. FIGS. 2A and 2B show more detailed block diagrams of the logical architecture of the system 100 of FIG. 1. In particular, FIG. 2A shows a block diagram of the system 100 according to one embodiment in which the Exchange 108 is interconnected with a second FX marketplace to allow existing FX market participants to transact over the Exchange as described herein. In this embodiment, the second FX marketplace is provided by Reuters. FIG. 2B shows a block diagram of the system 100 according to a second embodiment in which the Exchange 108 further provides connectivity to existing FX market participants.

    While the disclosed embodiments relate to the trading of OTC FX instruments, the mechanisms and methods described herein are not limited thereto and may be applied to any OTC product.

    Typically, the Exchange 108 provides a “clearing house” which is a division of the Exchange 108 through which all trades made must be confirmed, matched and settled each day until offset or delivered. The clearing house is an adjunct to the Exchange 108 responsible for settling trading accounts, clearing trades, collecting and maintaining performance bond funds, regulating delivery and reporting trading data. Essentially mitigating credit. Clearing is the procedure through which the Clearing House becomes buyer to each seller of a futures contract, and seller to each buyer, also referred to as a “novation,” and assumes responsibility for protecting buyers and sellers from financial loss by assuring performance on each contract. This is effected through the clearing process, whereby transactions are matched. A clearing member is a firm qualified to clear trades through the Clearing House. In the case of the CME’s clearing house, all clearing members not specifically designated as Class B members are considered Class A clearing members. In the CME there are three categories of clearing members: 1) CME clearing members, qualified to clear transactions for all commodities; 2) IMM clearing members, qualified to clear trades for only IMM and IOM commodities; and 3) IMM Class B clearing members, solely limited to conducting proprietary arbitrage in foreign currencies between a single Exchange-approved bank and the IMM and who must be guaranteed by one or more Class A non-bank CME or IMM clearing member(s). Note that a “member” is a broker/trader registered with the Exchange. As will be discussed below, in the disclosed embodiments, a new clearing member class may be introduced for the purposes of trading OTC FX, exclusively or along with other CME products, i.e. futures, as described herein. It will be appreciated that such classifications are implementation dependent.

    In the presently disclosed embodiments, the Exchange 108 assumes an additional role as the central intermediary in OTC FX transactions, i.e. the Exchange 108 will become the buyer to each seller and seller to each buyer, and assume responsibility for protecting buyers and sellers from financial loss by assuring performance on each contract, as is done in futures transactions. As used herein, the term “Exchange” 108 will refer to the centralized clearing and settlement mechanisms, risk management systems, etc. as described below, used for futures trading, including the described enhancements to facilitate OTC FX transactions. By assuming this intermediary role and employing credit screening and risk management mechanisms, parties previously not able to trade OTC FX, because for example they were credit screened out, may now trade anonymously. In prior OTC FX markets, banks were the only sell-side to transactions. The presently disclosed embodiments permit traders to take either sell or buy-side positions and sell-side is no longer limited to banks.

    While the disclosed embodiments will be described in reference to the CME, it will be appreciated that these embodiments are applicable to any Exchange 108. including those which trade in equities and other securities. The CME Clearing House clears, settles and guarantees all matched transactions in CME contracts occurring through its facilities. In addition, the CME Clearing House establishes and monitors financial requirements for clearing members and conveys certain clearing privileges in conjunction with the relevant exchange markets.

    As an intermediary, the Exchange 108 bears a certain amount of risk in each transaction that takes place. To that end, risk management mechanisms protect the Exchange via the Clearing House. The Clearing House establishes clearing level performance bonds (margins) for all CME products and establishes minimum performance bond requirements for customers of CME products. A performance bond, also referred to as a margin, is the funds that must be deposited by a customer with his or her broker, by a broker with a clearing member or by a clearing member with the Clearing House, for the purpose of insuring the broker or Clearing House against loss on open futures or options contracts. This is not a part payment on a purchase. The performance bond helps to ensure the financial integrity of brokers, clearing members and the Exchange as a whole. The Performance Bond to Clearing House refers to the minimum dollar deposit which is required by the Clearing House from clearing members in accordance with their positions. Maintenance, or maintenance margin, refers to a sum, usually smaller than the initial performance bond, which must remain on deposit in the customer’s account for any position at all times. The initial margin is the total amount of margin per contract required by the broker when a futures position is opened. A drop in funds below this level requires a deposit back to the initial margin levels, i.e. a performance bond call. If a customer’s equity in any futures position drops to or under the maintenance level because of adverse price action, the broker must issue a performance bond/margin call to restore the customer’s equity. A performance bond call, also referred to as a margin call, is a demand for additional funds to bring the customer’s account back up to the initial performance bond level whenever adverse price movements cause the account to go below the maintenance. As will be discussed below, additional functionality is provided in the disclosed embodiments to provide risk management for OTC FX transactions.

    The accounts of individual members, clearing firms and non-member customers doing business through CME must be carried and guaranteed to the Clearing House by a clearing member. As mentioned above, in every matched transaction executed through the Exchange’s facilities, the Clearing House is substituted as the buyer to the seller and the seller to the buyer, with a clearing member assuming the opposite side of each transaction. The Clearing House is an operating division of the Exchange 108. and all rights, obligations and/or liabilities of the Clearing House are rights, obligations and/or liabilities of CME. Clearing members assume full financial and performance responsibility for all transactions executed through them and all positions they carry. The Clearing House, dealing exclusively with clearing members, holds each clearing member accountable for every position it carries regardless of whether the position is being carried for the account of an individual member, for the account of a non-member customer, or for the clearing member’s own account. Conversely, as the contra-side to every position, the Clearing House is held accountable to the clearing members for the net settlement from all transactions on which it has been substituted as provided in the Rules. As will be explained below, these mechanisms will be augmented so as to handle OTC FX transactions.

    More information about minimizing the risk to the Exchange 108 while similarly minimizing the burden on members, approximating the requisite performance bond or margin requirement as closely as possible to the actual positions of the account at any given time and improving the accuracy and flexibility of the mechanisms which estimate performance bond requirements, may be found in the following U.S. Patent Applications, all of which are incorporated by reference herein:

        U.S. patent application Ser. No. 11/030,815, “SYSTEM AND METHOD FOR ACTIVITY BASED MARGINING”, filed Jan. 7, 2005, now U.S. Pat. No. 7,769,667; U.S. patent application Ser. No. 11/030,796, “SYSTEM AND METHOD FOR EFFICIENTLY USING COLLATERAL FOR RISK OFFSET”, filed Jan. 7, 2005, now U.S. Pat. No. 7,426,487; U.S. patent application Ser. No. 11/030,833, “SYSTEM AND METHOD FOR ASYMMETRIC OFFSETS IN A RISK MANAGEMENT SYSTEM”, filed Jan. 7, 2005, now U.S. Pat. No. 7,509,275; U.S. patent application Ser. No. 11/030,814, “SYSTEM AND METHOD FOR DISPLAYING A COMBINED TRADING AND RISK MANAGEMENT GUI DISPLAY”, filed Jan. 7, 2005, published as U.S. Patent Application Publication No. US 2006/0059065 A1, pending; U.S. patent application Ser. No. 11/031,182, “SYSTEM AND METHOD FOR FLEXIBLE SPREAD PARTICIPATION”, filed Jan. 7, 2005, now U.S. Pat. No. 7,593,877; U.S. patent application Ser. No. 11/030,869, “SYSTEM AND METHOD FOR HYBRID SPREADING FOR RISK MANAGEMENT”, filed Jan. 7, 2005, now U.S. Pat. No. 7,428,508; and U.S. patent application Ser. No. 11/030,849, “SYSTEM AND METHOD OF MARGINING FIXED PAYOFF PRODUCTS”, filed Jan. 7, 2005, now U.S. Pat. No. 7,430,539.

      In the present OTC FX markets, liquidity and access to pricing is fragmented creating inefficiencies for market participants. Such fragmentation is due in part to traditional reliance on bi-lateral counterpart credit that compartmentalizes trading, as well as the legacy role of banks as market makers to non-bank traders/firm. The centrally cleared marketplace for OTC FX provided by the disclosed embodiments permits access to the best pricing, equal access for all market segments, and buy-side and sell-side, as well as operational efficiencies, as will be discussed.

      In bi-lateral trading, buyers and sellers essentially consummate deals on their own. Sellers must accept each buyer’s credit, buyers send payment directly to each seller and buyers must accept each seller’s ability to perform on the contract. If either party wishes to close out a deal prior to delivery, they must negotiate exclusively with their original counterparty. Such bi-lateral trading creates inefficiencies for the FX buy-side. For example, bi-lateral trading creates inefficient pricing in that the market consists of multiple trading counterparties and the requirement to open and close positions with the same bank. Further, bi-lateral trading creates inefficient use of collateral, e.g. there may be requirements to place margin at several banks, and creates excessive operational risk, e.g. multiple back-office confirmation relationships.

      Present FX trade settlement utilizes the Continuous Linked Settlement (“CLS”) Bank. Prior to the availability of the CLS Bank, FX trade settlements resulted in separate currency payments between trade counterparties, which incurred heightened risk that one party might default, especially in view of time zone differences, also known as “Herstaat Risk.” The CLS Bank eliminates ‘temporal’ settlement risk by settling both sides of dual currency payments by delivery-vs.-payment, thereby mitigating Herstaat Risk in daily settlements.

      Straight-Through-Processing (“STP”) provides the benefits of reduction in errors during processing, acceleration of trade processing, real time risk management, automated account allocations, and back office staffing efficiencies. However, in the present OTC FX markets, the benefits of STP are limited by lack of standardization and real time delivery of both electronic trade affirmations and trade confirmations.

      The disclosed embodiments offer reduced cost of market access, and thereby better access to best-pricing, lower infrastructure support costs and easier and less costly trade execution, price and volume transparency, efficient risk transfer, STP standardization and auditable prices and mark-to-market.

      In particular, the disclosed embodiments feature centralized OTC FX execution and clearing via a centralized matching and clearing platform accessed, for example, via prime brokers/direct clearing. The disclosed systems and methods may be used by institutional participants in the OTC FX markets, such as banks, asset managers, leveraged trading firms (hedge funds, CTA’s, prop firms, etc.), and/or currency program and overlay managers. The disclosed systems and methods may support OTC FX products, such as Spot, FX forward swap and FX options instruments. The disclosed systems and methods utilize trade matching technology as well as graphic user interface (“GUI”) and application program interface (“API”) based methods of interaction. Further, a novel request for quote process is provided. In the disclosed embodiments, clearing takes place via the Exchange clearing house, such as the CME Clearing House. Daily settlements may still occur utilizing the CLS bank but with added efficiencies which will be discussed below. Collateralized risk margining is also provided as will be discussed below. Further, OTC STP protocols are supported.

      The disclosed embodiments provide value for the buy-side of OTC FX transactions. In particular, the disclosed systems and methods address customer demand for increased FX market efficiencies, pre-trade, trade and post-trade. For example, the disclosed embodiments provide access to trading lines and limits as well as audited and published FX price and volume data. Further, access to best pricing is provided as well as trade anonymity, improved execution speed, access to a primary liquidity pool, and access to multiple FX products. In addition, real time STP is provided as is efficient trade/position management via multi-lateral netting. Further all trading styles are accommodated, such as algorithmic trading, GUI/Keyboard trading and request for quote (“RFQ”) based trading.

      On the sell-side, the disclosed embodiments further provide value to banks. For example, they permit the ability to extend market making activities beyond the limits of bilateral credit relationships, e.g. trade with new customers, extend trading with existing customers, etc. Further, increased access to FX liquidity and accommodation of various trading styles is also provided. In addition, access to real time risk management and STP is provided along with credit and settlement risk mitigation.

      In at least one of the disclosed embodiments, a hybrid market model may be provided which combines exchange central limit order book matching and bilateral trading of the OTC market with expanded electronic, anonymous access and clearing. Alternatively, other embodiments may provide sub-sets of this functionality.

      The disclosed embodiments support one or more of the following FX instrument types: forwards, spot and swaps. Forwards refers to FX forward contracts that expire daily starting from tomorrow, i.e. the day after the transaction date, and running out for two years, for each currency-pair. A “Spot” refers the Forward which expires in two days after the transaction date. A swap is essentially a calendar spread, i.e. the simultaneous purchase (sale) of contract(s) in a near delivery month (first leg) and the sale (purchase) of an equal number of contract(s) in a far delivery month of the same contract (second leg), where the first leg is a Spot and the second leg is a further out Forward.

      In one embodiment, a defined number of swap products are offered including Spot against the following (37 in total, assuming it the stated day or next day thereafter which is not a holiday in either currency):

          Tomorrow—Tom Next (T/N)

        —The Swap which has a first Forward leg expiring tomorrow and the next Forward leg as “Spot” The day after tomorrow—Spot Next (S/N) Swap Forwards at 1 week, 2 weeks, 3 weeks Monthly Swap Forwards from 1 month through 24 months Except if this date is on a weekend or a holiday in either currency, go to the first preceding week date which is not a holiday in either currency Except if the spot value date is the last date of the month, then go to the last week date of the N’th month following which is not a holiday in either currency. Swap Forwards at the 8 IMM dates over the next 2 years Broken-Dated Swap—Any Swap which is not one of the pre-defined Swaps above.

        It will be appreciated that other product combinations may also be offered.

        Further, the disclosed embodiments utilize Daily Rolling Instruments wherein the contract symbol used by the customers to reference a given Swap or Spot does not change, day-to-day, but the Swap legs do change each day, i.e. the temporal references within the instrument are treated as relative to the transaction date rather than being expressed in absolute form thereby necessitating a significantly increased symbol set to reference them:

            From the trader perspective, contract symbols for electronically matched instruments are “generic”—Fill messages include the value dates and prices of each leg; Instrument definitions would therefore include contract symbols like “USDSPYSP” for Spot and “USDJPY1M” to specify the 1 month, forward Swap.

          Each day, new instruments are used:

              Forward for the 2 year date All Swap instruments are refreshed with new legs

            The appropriate value dates for electronically matched contracts are assigned by the system at match time and provided to the user within the order entry/front office fill messages for each leg. For Directed Request For Quote (“Directed RFQ” or “DRFQ”), discussed in more detail below, users may enter the desired legs for a Directed RFQ using generic contracts, with the requested value dates. For example, a user wishing to do an RFQ for a forward outright, i.e. an order to buy or sell only one specific type of contract, with a specific value date should be able to specify that, without having to specify a unique contract that is associated internally with that value date.

            Referring to FIG. 3. in one embodiment, the Spot leg price is the mid-point between the bid/ask in the current Spot market or last traded within a specific time period; the other Forward leg price is made based on the Spot price plus the differential (e.g. “30” is a 0.0030 differential between the Spot and the Forward leg).

            If the mid-point between the bid/ask in the current Spot market is stale, settlement information may be used. If the spot market is not liquid and no market data is currently being produced, customers will be kept up to date with secondary sources to minimize unexpected results when the leg price comes in. A business rule of having the Spot markets regularly quoted by market makers may provided.

            For some markets, the Swap does not use the Spot for that market, but rather an associated market. This is accomplished by doing a reciprocal (1/current-price) calculation of the spot, or spot mid-point in that associated market.

            In the disclosed embodiments, for the purposes of determining the value date, value date conventions are employed. For example, the value-date convention for spot for USD/CAD is one business day and for all others it is two business days. A value date is valid for a currency pair if it is a banking business day for both currencies of the pair. Trading may physically occur on any weekday. However, for trading occurring on any given weekday, the rule for taking holidays into account when determining the value date for “spot” trading on that weekday differs depending on the currency in which the holiday occurs. For holidays in USD, you need only one full working day before you can settle a spot trade. For example: Wednesday July 4th (US Independence Day), a USD holiday; Monday’s spot trading in USD/JPY has value date Thursday (because Wednesday is a USD holiday); Tuesday’s spot trading in USD/JPY also has value date Thursday (because you only need one USD working day). For holidays in currencies other than USD, two full working days before settlement may be required. For example: Wednesday December 7th (Pearl Harbor Day), a JPY holiday; Monday’s spot trading in USD/JPY has value date Thursday (because Wednesday is a JPY holiday); Tuesday’s spot trading in USD/JPY has value date Friday (because Wednesday is a JPY holiday and you need two full working days in JPY).

            In the disclosed embodiments, support for the instruments listed in Table 1 is provided. It will be appreciated that the instrument offerings may vary and are implementation dependent. In particular, the Central Limit Order Book (“CLOB”) will support Spot and/or standardized Swap forwards. The Directed RFQ mechanism, discussed in more detail below, will support Spot, Forwards (any date out to 2 years), Swap forwards (standardized cases), Broken-dated swaps, or combinations thereof.

            Categories
            Options  
            Tags
            Here your chance to leave a comment!